

Anti-IκBα (Ser-32/Ser-36), Phosphospecific Antibody

Catalog # AN1815

Specification

Anti-IκBα (Ser-32/Ser-36), Phosphospecific Antibody - Product Information

Application WB
Primary Accession P25963
Reactivity Bovine
Host Mouse

Clonality Mouse Monoclonal

Isotype IgG1
Calculated MW 35609

Anti-IκBα (Ser-32/Ser-36), Phosphospecific Antibody - Additional Information

Gene ID 4792

Other Names

IkB, MAD3, IkappaBalpha, NFkappaB inhibitor IkBa

Target/Specificity

The NF- κ B/Rel transcription factors are present in the cytosol in an inactive state complexed with the inhibitory IkB proteins. Activation of IkB α occurs through both serine and tyrosine phosphorylation events. Activation through phosphorylation at Ser-32 and Ser-36 is followed by proteasome-mediated degradation, resulting in the release and nuclear translocation of active NF- κ B. This pathway of IkB α regulation occurs in response to various NF- κ B-activating agents, such as TNF α , interleukins, LPS, and irradiation. An alternative pathway for IkB α regulation occurs through tyrosine phosphorylation of Tyr-42 and Tyr-305. Tyr-42 is phosphorylated in response to oxidative stress and growth factors. This phosphorylation can lead to degradation of IkB α and NF- κ B-activation. In contrast, Tyr-305 phosphorylation by c-AbI has been implicated in IkB α nuclear translocation and inhibition of NF- κ B-activation. Thus, tyrosine phosphorylation of IkB α may be an important regulatory mechanism in NF- κ B signaling.

Dilution

WB~~1:1000

Storage

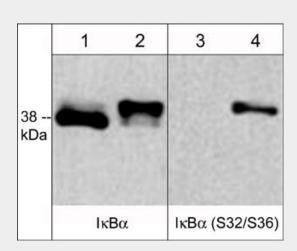
Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Anti-IkB α (Ser-32/Ser-36), Phosphospecific Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Shipping

Blue Ice


Anti-IκBα (Ser-32/Ser-36), Phosphospecific Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

Anti-IκBα (Ser-32/Ser-36), Phosphospecific Antibody - Images

Western blot analysis of Jurkat cells untreated (lanes 1 & 3) or treated with TNF α (1 nM). The blots were probed with anti-IkB α (lanes 1 & 2) or anti-IkB α (Ser-32/Ser-36) (lanes 3 & 4).

Anti-IκBα (Ser-32/Ser-36), Phosphospecific Antibody - Background

The NF- κ B/Rel transcription factors are present in the cytosol in an inactive state complexed with the inhibitory IkB proteins. Activation of IkB α occurs through both serine and tyrosine phosphorylation events. Activation through phosphorylation at Ser-32 and Ser-36 is followed by proteasome-mediated degradation, resulting in the release and nuclear translocation of active NF- κ B. This pathway of IkB α regulation occurs in response to various NF- κ B-activating agents, such as TNF α , interleukins, LPS, and irradiation. An alternative pathway for IkB α regulation occurs through tyrosine phosphorylation of Tyr-42 and Tyr-305. Tyr-42 is phosphorylated in response to oxidative stress and growth factors. This phosphorylation can lead to degradation of IkB α and NF- κ B-activation. In contrast, Tyr-305 phosphorylation by c-Abl has been implicated in IkB α nuclear translocation and inhibition of NF- κ B-activation. Thus, tyrosine phosphorylation of IkB α may be an important regulatory mechanism in NF- κ B signaling.